If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-28x+1=0
a = 13; b = -28; c = +1;
Δ = b2-4ac
Δ = -282-4·13·1
Δ = 732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{732}=\sqrt{4*183}=\sqrt{4}*\sqrt{183}=2\sqrt{183}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-2\sqrt{183}}{2*13}=\frac{28-2\sqrt{183}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+2\sqrt{183}}{2*13}=\frac{28+2\sqrt{183}}{26} $
| 2p-4=-2 | | 3/8x=2/9 | | 7x+(-35)=3x+42 | | -3x=342 | | -(y-4)+3y=(y+1) | | 4x+8=2x=7+2x-20 | | 15=25n | | 32=6y+2(y-4) | | x-16x-5=-70 | | 3+x=-3x+2(3+2x | | N-5+3n=-21 | | 7/9x-6=4.5x= | | 1/3(2x+4)=-6 | | -31=-6x | | 7x+13=x-29 | | -5+6x=0+7 | | 5(r-1)+6=3r+9 | | 32-2x=14+7x | | 7/9x-6=4.5 | | 6k^2+25k+25=0 | | 3/4*n=5/16 | | 1x-20=3x+12 | | 1/8y+3=-11 | | -21x+18=7x-22 | | Y=(3/8)x^2 | | H(t)=16t^2+32t+4 | | 24-4x=15-3x+10-x | | 4x-2(x-2)=-6+4x+4 | | 50+100=40k+140 | | 1/8(x-6)(x+2)=0 | | X+x+1+x+2+x+3+x4=2000 | | 6x-4(2x-5)=-140 |